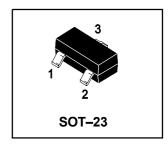
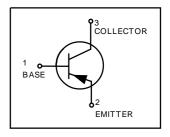


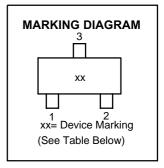
General Purpose Transistors PNP Silicon

- Moisture Sensitivity Level: 1
- ESD Rating Human Body Model: >4000 V
 - Machine Model: >400 V
- We declare that the material of product compliance with RoHS requirements.
- S- Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC85 BC85 BC858, BC85	, 020	-65 -45 -30	V
Collector-Base Voltage BC85 BC85 BC858, BC85	· OBO	-80 -50 -30	V
Emitter-Base Voltage	VEBO	-5.0	V
Collector Current – Continuous	lc	-100	mAdc


THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, (Note 1.) T _A = 25°C Derate above 25°C	PD	225 1.8	mW mW/°C
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2.) T _A = 25°C Derate above 25°C	PD	300 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

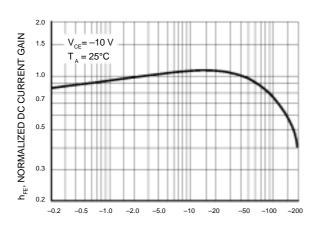
- 1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in
- 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

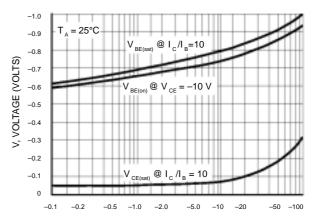
BC857 Series S-BC857 Series

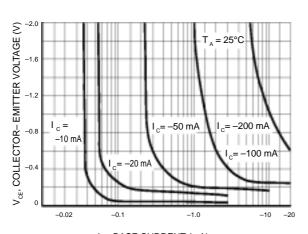
DEVICE MARKING AND ORDERING INFORMATION

Device	Marking	Package	Shipping
(S-)BC856A	3A	SOT-23	3000/Tape&Reel
(S-)BC856B	3B	SOT-23	3000/Tape&Reel
(S-)BC857A	3E	SOT-23	3000/Tape&Reel
(S-)BC857B	3F	SOT-23	3000/Tape&Reel
(S-)BC857C	3G	SOT-23	3000/Tape&Reel
(S-)BC858A	3J	SOT-23	3000/Tape&Reel
(S-)BC858B	3K	SOT-23	3000/Tape&Reel
(S-)BC858C	3L	SOT-23	3000/Tape&Reel
(S-)BC859B	4B	SOT-23	3000/Tape&Reel
(S-)BC859C	4C	SOT-23	3000/Tape&Reel

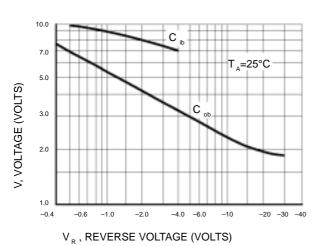
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


Characteri	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage (I _C = -10 mA)	BC856 Series BC857 Series BC858, BC859 Series	V(BR)CEO	-65 -45 -30	_ _ _	- - -	V
Collector–Emitter Breakdown Voltage ($I_C = -10 \mu A, V_{EB} = 0$)	BC856 Series BC857 Series BC858, BC859 Series	V _(BR) CES	-80 -50 -30	- - -	- - -	V
Collector–Base Breakdown Voltage (I _C = -10μ A)	BC856 Series BC857 Series BC858, BC859 Series	V _(BR) CBO	-80 -50 -30	- - -	- - -	V
Emitter–Base Breakdown Voltage ($I_E = -1.0 \mu A$)	BC856 Series BC857 Series BC858, BC859 Series	V _{(BR)EBO}	-5.0 -5.0 -5.0	- - -	- - -	V
Collector Cutoff Current ($V_{CB} = -30 \text{ V}$) ($V_{CB} = -30 \text{ V}$, T_{A}	ICBO	1 1	_ _	-15 -4.0	nA μA	
ON CHARACTERISTICS						
DC Current Gain $(I_C = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$ BC856 BC856 BC857	hFE	125 220 420	180 290 520	250 475 800	-	
Collector–Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)		VCE(sat)	- -	_ _	-0.3 -0.65	V
Base–Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)		VBE(sat)	_ _	-0.7 -0.9	- -	V
Base–Emitter On Voltage ($I_C = -2.0$ mA, $V_{CE} = -5.0$ V) ($I_C = -10$ mA, $V_{CE} = -5.0$ V)		VBE(on)	-0.6 -	_ _	-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTIC	S					
Current–Gain – Bandwidth Product (I _C = -10 mA, V _{CE} = -5.0 Vdc, f = 100 MHz)		fΤ	100	_	_	MHz
Output Capacitance (V _{CB} = -10 V, f = 1.0 MHz)	C _{ob}	_	_	4.5	pF	
Noise Figure (I _C = -0.2 mA, V _{CE} = -5.0 Vdc, R _S = 2 BC856 BC859	NF	- -	_ _	10 4.0	dB	




BC857/ BC858

 $\rm I_{_{\rm C}}$, COLLECTOR CURRENT (mAdc) Figure 1. Normalized DC Current Gain


 I_c , COLLECTOR CURRENT (mAdc) Figure 2. "Saturation" and "On" Voltages

I_B, BASE CURRENT (mA) Figure 3. Collector Saturation Region

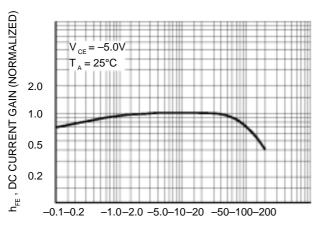
Figure 4. Base-Emitter Temperature Coefficient

f., CURRENT- GAIN - BANDWIDTH PRODUCT (MHz) $T_A = 25^{\circ}C$ -2.0 -3.0 -5.0 -0.5

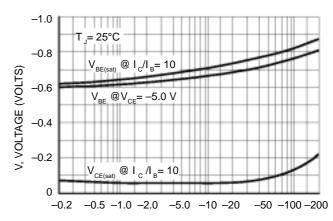
400

Revised: 2022-02-11

I_c, COLLECTOR CURRENT (mAdc)



Page:4



 $\rm I_{_{\rm C}}$, COLLECTOR CURRENT (mA)

Figure 7. DC Current Gain

 $\rm I_{\rm C}$, COLLECTOR CURRENT (mA)

Figure 8. "On" Voltage

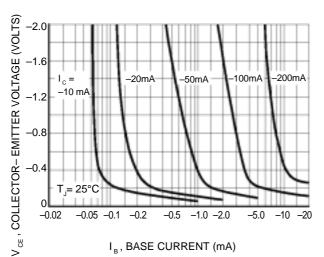


Figure 9. Collector Saturation Region

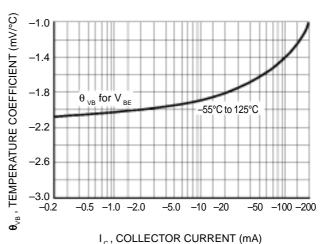
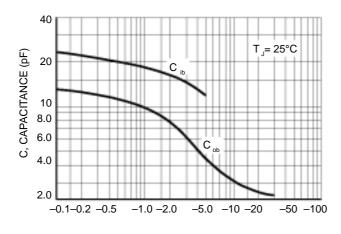
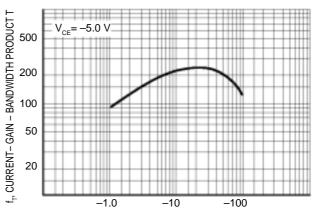




Figure 10. Base-Emitter Temperature Coefficient

 V_{R} , REVERSE VOLTAGE (VOLTS)

Figure 11. Capacitance

 $\rm I_{_{\rm C}}$, COLLECTOR CURRENT (mA)

Revised: 2022-02-11

Figure 12. Current-Gain - Bandwidth Product

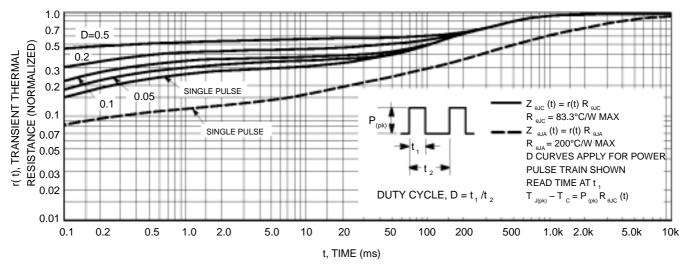
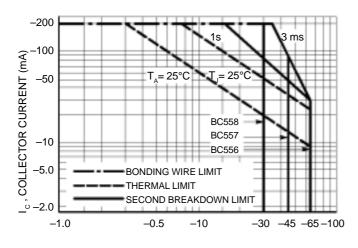



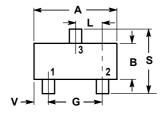
Figure 13. Thermal Response

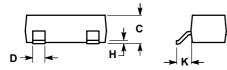
Revised: 2022-02-11

 V_{CE} , COLLECTOR-EMITTER VOLTAGE (V)

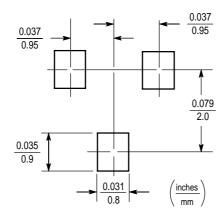
Figure 14. Active Region Safe Operating Area

The safe operating area curves indicate I $_{\rm c}$ –V $_{\rm CE}$ limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.


The data of Figure 14 is based upon T $_{J(pk)} = 150^{\circ}\text{C}$; T $_{\text{C}}$ or T $_{\text{A}}$ is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided T $_{J(pk)} \leq 150^{\circ}\text{C}$. T $_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.



SOT-23



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	0.1102	0.1197	2.80	3.04	
В	0.0472	0.0551	1.20	1.40	
С	0.0350	0.0440	0.89	1.11	
D	0.0150	0.0200	0.37	0.50	
G	0.0701	0.0807	1.78	2.04	
Н	0.0005	0.0040	0.013	0.100	
J	0.0034	0.0070	0.085	0.177	
K	0.0140	0.0285	0.35	0.69	
L	0.0350	0.0401	0.89	1.02	
S	0.0830	0.1039	2.10	2.64	
V	0.0177	0.0236	0.45	0.60	

